

## Paper proposal

# **Measurement of system size dependence** of directed flow of protons (anti-protons) at **RHIC**

# **Muhammad Farhan Taseer**

mfarhan\_taseer@impcas.ac.cn

**On behalf of PAs** 



## \* Target journal: Phys. Rev. Lett.

 $\checkmark$ **PA List:** Jinhui Chen, Aditya Prasad Dash, Huan Huang, Hao Qiu, Diyu Shen, Subhash Singha, Aihong Tang, Muhammad Farhan Taseer and Gang Wang



**University of Chinese Academy of Sciences** 









Paper title: Measurement of system size dependence of directed flow of protons (anti-protons) at RHIC

PA List: Jinhui Chen, Aditya Prasad Dash, Huan Huang, Hao Qiu, Diyu Shen, Subhash Singha, Aihong Tang, Muhammad Farhan Taseer and **Gang Wang** 

- **Contact:** mfarhan\_taseer@impcas.ac.cn
- Targeted journal: Phys. Rev. Lett.
- **Webpage:** in preparation
- **Analysis note:** in preparation
- **Paper draft:** in preparation







## • **Talks in PWG meeting:**

- https://drupal.star.bnl.gov/STAR/system/files/TASEER\_UU\_FCV%20%281-05-2024%29.pdf
- https://drupal.star.bnl.gov/STAR/blog/mftaseer/Charge-dependent-directed-flow-UU-Collisions-193-GeV

## **Talks in international meetings:** •

✓ https://drupal.star.bnl.gov/STAR/system/files/Measurement%20of%20chargedependent%20directed%20flow%20in%20STAR%20Beam%20Energy%20Scan%20%28BES-II%29%20Au%2BAu%20and%20U%2BU%20Collisions%20%282024-06-04%29 0.pdf (SQM-2024)

## **Preliminary figures:**

https://drupal.star.bnl.gov/STAR/system/files/TASEER\_UU\_Premilinary%20%2815-05-2024%29.pdf  $\checkmark$ 

## **SQM Proceedings:**

✓ https://drupal.star.bnl.gov/STAR/presentations/SQM-2024/Measurement-charge-dependent-directedflow-STAR-Beam-Energy-Scan-BES-II-AuA-2





**Directed Flow**  $(v_1)$  describes the collective sideward motion of the produced particles and nuclear fragments  $\rightarrow$  carries information from the early stages of collision

- $v_1 = \langle \cos(\phi \Psi_{\rm EP}) \rangle / R \{ \Psi_{\rm EP} \}$
- **R** Event Plane Resolution
- **Event Plane azimuthal Angle**
- Azimuthal angle of outgoing particles

In the expanding QGP, quarks experience following electromagnetic effects [1]

- Hall Effect: F = q (v x B) by Lorentz Force •
- **Coulomb Effect:** E generated by spectator nucleons
- **Faraday Induction:** decreasing **B** as spectators fly away

These electromagnetic forces provide opposite contribution of  $v_1$  to particles with opposite charges

$$I_{(total)} = I_{(Hall)} + I_{(Faraday)}$$
Coulomb effect
$$Directed Flow (v_1)$$
Coulomb effect

U. Gürsoy et al. PRC 98,055201, PRC 89 054905 [1]

 $v_1 < 0$ 







(Based on UrQMD)

## The splitting of $v_1$ between particle and antiparticle is measured as: \*

## $\Delta v_1 = dv_1^+/dy - dv_1^-/dy$





## PRX 14, 011028 [STAR]





- **\*** For inclusive charged particles,  $v_1$  of Au+Au  $\approx$  Cu+Cu at a fixed centrality
- However, transport model (e.g. UrQMD) predicts a system size dependent v<sub>1</sub>
- We shall present  $v_1$  and  $\Delta v_1$  in U+U, Au+Au and Isobar (RuRu + ZrZr)







# **Dataset and analysis details**

| Collision S                                                                                                                                                                | System:                     | (U+U)                        | New                                                              |           |                   |                                   |                                   |    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|------------------------------------------------------------------|-----------|-------------------|-----------------------------------|-----------------------------------|----|--|
| Collision Energy                                                                                                                                                           |                             | Production id                | Run Numbers                                                      |           |                   |                                   | <b>Trigger id</b>                 |    |  |
| 193 GeV (2012)                                                                                                                                                             |                             | P12id                        | 13114025-13136015<br>(783)                                       |           |                   | 4<br>4                            | 400005, 400015,<br>400025, 400035 |    |  |
| Vertex Se                                                                                                                                                                  | lection                     |                              | Track Se                                                         |           |                   | elect                             | lection                           |    |  |
| Vz  < 50 cm                                                                                                                                                                |                             | Vr  < 2 cm                   |                                                                  |           | η  <b>&lt;1.0</b> | D                                 | )CA < 3 cm                        | nH |  |
| Particle Identification                                                                                                                                                    |                             |                              |                                                                  |           |                   |                                   |                                   |    |  |
| Pion:                                                                                                                                                                      | Nσ  < 2                     | .0 -0.01                     | -0.01 < m <sup>2</sup> < 0.10 (GeV/c <sup>2</sup> ) <sup>2</sup> |           |                   | p <                               | p<1.6 GeV/c && p <sub>t</sub> >0  |    |  |
| Kaon:                                                                                                                                                                      | <b> Ν</b> σ <b>  &lt; 2</b> | 2.0 0.20                     | 0.20 < m <sup>2</sup> < 0.35 (GeV/c                              |           | (GeV/c²)²         | p<1.6 GeV/c && p <sub>t</sub> >0. |                                   |    |  |
| Proton:                                                                                                                                                                    | <b> N</b> σ <b>  &lt; 2</b> | ) 0.8 < m <sup>2</sup> < 1.0 |                                                                  | (GeV/c²)² |                   | p <                               | p<2.0 GeV/c && p                  |    |  |
|                                                                                                                                                                            |                             |                              | Bad                                                              | R         | luns [19]         |                                   |                                   |    |  |
| 13117026, 13117027, 13117028, 3117029, 13117030, 13117031, 13117032, 1311703<br>13117035, 13117036, 13118009, 13118034, 13118035, 13119016, 13119017, 13129047<br>13132047 |                             |                              |                                                                  |           |                   |                                   |                                   |    |  |

Au+Au and Isobar (Ru+Ru & Zr+Zr) details can be found at: https://drupal.star.bnl.gov/STAR/system/files/Charge\_v1\_analysisNote\_v7.pdf



7

## lo. of Events (After cut)

## ≈ 250 M

## its Fits >= 15

## ).2 GeV/c

## .2 GeV/c

## .4 GeV/c





For this analysis,  $v_1$  is computed using **Event Plane Method** in which we estimate the reaction plane, called the event plane, from the observed event plane angle determined from the anisotropic flow itself.

**Analysis Procedure** 

$$v_1 = rac{\langle \cos{(\phi - \Psi_1^{EP})} 
angle}{R_1}$$

- **R** Event Plane Resolution
- Ψ Event Plane Angle
- **φ** Reaction Plane angle of outgoing particles
- Average over all particles used in event plane calculations

Where,  $\Psi_1^{EP}$  is reconstructed using ZDC and the event plane is flatten by applying Shift correction

Analysis is carried out in four steps:

- 1- Datasets and Events Selection
- 2- Event Plane reconstruction
- **3-** Particle Identification:  $\pi$ , k, p ---- TPC & TOF cuts
- **4-** Directed Flow  $(v_1)$  extraction using the above relation



Finally, Systematic study is done by varying Event, Track & PID selection







| Default                                                                                                                                                | Systematic                                                                                                                                                                                                                                                                            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $-50 < V_z^{TPC} < 50 \text{ cm}$                                                                                                                      | -50 < V <sub>z</sub> <sup>TPC</sup> < 0 cm                                                                                                                                                                                                                                            |  |  |  |
| N <sub>fits</sub> > 15                                                                                                                                 | N <sub>fits</sub> > 20                                                                                                                                                                                                                                                                |  |  |  |
| -0.8 < y < 0.8                                                                                                                                         | -0.8 < y < 0.0<br>& 0.0 < y < 0.8                                                                                                                                                                                                                                                     |  |  |  |
| DCA < 3 cm                                                                                                                                             | DCA < 1.0 cm<br>& DCA < 1.5 cm                                                                                                                                                                                                                                                        |  |  |  |
| -2.0 < nσ <sup>τρc</sup> < 2.0                                                                                                                         | -1.0< nσ <sup>TPC</sup> < 1.0<br>& -1.5< nσ <sup>TPC</sup> < 1.5                                                                                                                                                                                                                      |  |  |  |
| Mass <sup>2</sup> (pi) = $-0.01 - 0.10 (GeV/c2)2$<br>Mass <sup>2</sup> (k) = $0.20 - 0.35 (GeV/c2)2$<br>Mass <sup>2</sup> (p) = $0.80 - 1.0 (GeV/c2)2$ | Mass <sup>2</sup> (pi) = $-0.009 - 0.09$ (GeV/c<br>Mass <sup>2</sup> (k) = $0.21 - 0.34$ (GeV/c <sup>2</sup> ) <sup>2</sup><br>Mass <sup>2</sup> (p) = $0.82 - 0.98$ (GeV/c <sup>2</sup> ) <sup>2</sup><br>& Mass <sup>2</sup> (p) = $0.84 - 0.96$ (GeV/c <sup>2</sup> ) <sup>2</sup> |  |  |  |

## The formula used for calculation is: \*

$$\begin{aligned} \sigma_i &= |Y_i - Y_d| / \sqrt{12}, \\ \sigma &= \sqrt{\sum \sigma_i^2}, \end{aligned}$$

Where, **Y**<sub>i</sub> = variation result  $Y_d$  = default result  $\sigma$  = final systematic uncertainty







# Abstract

We present the rapidity dependence of directed flow  $(v_1)$  and its slope  $(dv_1/dy)$  for  $\pi^{\pm}$ ,  $K^{\pm}$  and  $p(\bar{p})$  as a function of centrality in Au+Au and Isobar (Ru+Ru and Zr+Zr) collisions at  $\sqrt{s_{NN}} = 200$  GeV, and in U+U collisions at  $\sqrt{s_{NN}} = 193$  GeV, as measured by the STAR experiment at RHIC. The slope  $dv_1/dy$  for  $p(\bar{p})$  and the difference  $\Delta(dv_1/dy)$  exhibit a clear system size dependence, with an ordering of U+U > Au+Au > Isobar (Ru+Ru and Zr+Zr), while total baryons  $(p + \bar{p})$  remain independent of system size. This is the first observation of system size dependence of the  $v_1$  and  $\Delta(dv_1/dy)$  of baryons. In contrast, the inclusive particles, particularly mesons  $(\pi^{\pm} \text{ and } K^{\pm})$ , show no dependence on system size, consistent with previous findings at RHIC [1]. The  $\Delta(dv_1/dy)$  pattern for protons is primarily influenced by baryon transport and electromagnetic fields. In the most central collisions, where the electromagnetic field is minimal, baryon transport can be assessed more clearly. A hydrodynamic model with an inhomogeneous baryonic profile qualitatively captures the observed system size dependence, offering insights into baryon deposition and the transport properties of the QCD medium. Additionally, in mid-central and peripheral collisions, these data can provide insights into the strength of electromagnetic fields and the conductivities of the medium [2].

[1]. STAR Collaboration, Phys. Rev. Lett. 101, 252301

[2]. STAR Collaboration, Phys. Rev. X 14, 011028





# **Figure 1**









# **Figure 2**



## ✓ Hydro-model with inhomogeneous baryon deposition can qualitatively capture the system size dependence of proton and

12

# • anti-protons $\rightarrow$ U+U > Au+Au > Isobar





## **Figure 3**



Hydro calculation: Parida and Chatterjee, arXiv: 2305.08806 (private communication)



## ➢ pions → Isobar ~ Au+Au ~ U+U ≽ kaons → Isobar ~ Au+Au ~ U+U

## $\rightarrow$ protons $\rightarrow$ U+U > Au+Au > Isobar

➢ pions → Isobar ~ Au+Au ~ U+U kaons → Isobar ~ Au+Au ~ U+U ➢ protons → Isobar ~ Au+Au ~ U+U

## Hydro-model with inhomogeneous baryon distribution can qualitatively capture the system size dependence

## ✓ Hydro model special case (dashed green line): Hydro Au+Au (with net baryon same as Ru+Ru)



## B. Hydrodynamics at finite baryon density

The hydrodynamical equation of motion at finite net-baryon density can be written as,

$$\partial_{\mu}T^{\mu\nu} = 0, \tag{9}$$

$$\partial_{\mu}J_{B}^{\mu} = 0, \qquad (10)$$

where the system's energy momentum tensor can be decomposed as

$$T^{\mu\nu} = e u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}, \qquad (11)$$

and

$$J_B^{\mu} = n_B u^{\mu} + q^{\mu}. \tag{12}$$

The transport coefficients  $\eta$  and the baryon diffusion constant  $\kappa_B$  are chosen as

$$\frac{\eta T}{e + \mathcal{P}} = C_{\eta} \tag{15}$$

and

$$\kappa_B = \frac{C_B}{T} n_B \left( \frac{1}{3} \coth\left(\frac{\mu_B}{T}\right) - \frac{n_B T}{e + \mathcal{P}} \right).$$
(16)

 $\kappa_{\rm B}$ : Baryon diffusion coefficient constant;

In hydro model amount of baryon diffusion is varied by tuning the prefactor  $C_{B}$ 

Denicol et al, Phys. Rev. C. 98. 034916

## Hydro model with inhomogeneous baryon deposition:



Two component baryon deposition:  $(N_{part} + N_{coll})$ 

$$n_{B}(x, y, \eta_{s}) = N_{B} \left[ (1 - \omega) \left( N_{+}(x, y) f_{+}^{B}(\eta_{s}) + N_{-}(x, y) f_{-}^{B}(\eta_{s}) \right) + \omega N_{coll}(x, y) \left( f_{+}^{B}(\eta_{s}) + f_{-}^{B}(\eta_{s}) \right) \right]$$

$$\int \tau_{0} d\eta dx dy n_{B}(x, y, \eta_{s}) = N_{part} = (N_{+} + N_{-})$$
Normalisation

Motivated by baryon junction mechanism (Feature similar to single junction + double junction stopping)

- Parameters:  $\eta_m \rightarrow \text{tilt of bulk}, \omega \rightarrow \text{baryon tilt}$
- Pressure =  $P(\epsilon, n_{R})$
- Evolve hydro with the above initial condition
- It can qualitatively capture system size ٠ dependence of proton (anti-proto



 $(\eta_s)$ 

on) 
$$v_1$$
 and  $\Delta v_1$ 



Hydro model with inhomogeneous baryon deposition:

$$n_{B}(x, y, \eta_{s}) = N_{B} \left[ (1 - \omega) \left( N_{+}(x, y) f_{+}^{B}(\eta_{s}) + N_{-}(x, y) f_{-}^{B}(\eta_{s}) \right) + \omega N_{coll}(x, y) \left( f_{+}^{B}(\eta_{s}) + f_{-}^{B}(\eta_{s}) \right) \right]$$

$$\int \tau_{0} \, d\eta \, dx \, dy \, n_{B}(x, y, \eta_{s}) = N_{part} = (N_{+} + N_{-})$$
Normalisation

(p+p): total charge zero, total baryon zero ~ effectively carry no quantum number

 $\succ$  (p- $\overline{p}$ ): non-zero net-charge and net-baryon

Different system sizes  $\rightarrow$  different net baryon and its gradient

✓ Simulated Au+Au hydro with net baryon same as Ru+Ru at a fixed <N<sub>part</sub>> but all other parameters kept as default (e.g. entropy deposition is different)

 $\checkmark$  proton  $\Delta v_1$  shows no system size dependence with enforced same net baryon, especially in central collisions

- using data in central collisions (where EM-field contribution is expected to be small)
- proton  $\Delta v_1$  in different collision systems  $\rightarrow$  constrain baryon deposition in HIC → offer insights into baryon stopping mechanism
- However, in pure EM field expectation:
- Faraday + Coulomb  $\rightarrow$  negative  $\Delta v_1$
- Hall  $\rightarrow$  positive  $\Delta v_1$
- The hydro-model do not rule out EM-field scenario
- Need further model prediction (baryon transport + EM) to better understand underlying physics mechanisms





- We observed a system size dependent  $v_1$  and  $\Delta(dv_1/dy)$  for protons (antiprotons) among three different collision systems at similar collision energy
- However, mesons (pions and kaons) as well as total baryons ( $p + \overline{p}$ ) are found to be independent of system size (consistent with previous findings at RHIC)

 $(p - \overline{p}) v_1$ : U+U > Au+Au > Isobar  $(p + \overline{p}) v_1$ : U+U ~ Au+Au ~ Isobar

- These results will help understand baryon deposition (such as baryon) stopping mechanism) in heavy-ion collisions and provide strong constraint on baryon transport (such as baryon diffusion)
- These results will provide constraint on the strength and lifetime of the electromagnetic field as well as the medium electrical conductivity of the QGP in different collision system sizes

# Thank you for your attention!















**FAR** 



For Proton (antiproton)  $\rightarrow$  Significant splitting in mid-central collisions (10-40)% \*





# $\Delta v_1(p_T)$ for U+U Collisions

## $\Delta v_1 = v_1^+ - v_1^-$



• Pions (Kaons)  $\rightarrow$  consistent with zero within uncertainties

• **Protons**  $\rightarrow$  mid-central collisions  $\rightarrow \Delta v_1$  keep increasing with  $p_T$ peripheral collisions  $\rightarrow$  no oblivious p<sub>T</sub> dependence















## $\Delta(dv_1/dy)$ as a function of < Npart >









# **Event Plane & Resolution Plots**





## **Resolution Values: -**

 $U+U[9] = \{0.145016, 0.248548, 0.345383, 0.414196, 0.444727, 0.448302, 0.428285, 0.385058, 0.328569\}$  $Au+Au[9] = \{0.1563, 0.252126, 0.331136, 0.385756, 0.406247, 0.404069, 0.382588, 0.344916, 0.299311\}$  $lsobar[9] = \{0.0688674, 0.11634, 0.167703, 0.204098, 0.21988, 0.220753, 0.20985, 0.191277, 0.1727\}$ 



















# Slope $(dv_1/dy)$ for Different Collision Systems



For proton and antiproton, splitting in slopes are prominent in mid central (10-40)% collisions \*







## $\Delta(dv_1/dy)$ and $\Sigma(dv_1/dy)$ for Different Collision Systems

STAR









## $\Delta(dv_1/dy)$ for Pion







# $\Delta(dv_1/dy)$ for Pion







# **a<sub>1</sub>(y) for U+U Collisions**















# **Rapidity dependent v<sub>1</sub> (Pion)**







## **Rapidity dependent v<sub>1</sub> (Kaon)**







## **Rapidity dependent v<sub>1</sub> (Proton)**



32

IM





A linear function "y = mx" is used to get slope (dv<sub>1</sub>/dy) within rapidity range (-0.8, 0.8)







A linear function "y = mx" is used to get slope ( $dv_1/dy$ ) within rapidity range (-0.8, 0.8)









## Centrality dependent $dv_1/dy$ of Proton



A linear function "y = mx" is used to get slope  $(dv_1/dy)$  within rapidity range (-0.8, 0.8) For Proton, a sign change in  $dv_1/dy$  is observed in the mid central region







## Centrality dependent $\Delta(dv_1/dy)$ of pi, k, p



 $\Delta(dv_1/dy)$  is obtained using:  $\Delta(dv_1/dy) = [dv_1^+/dy - dv_1^-/dy]$ 









# Centrality dependent $\sum (dv_1/dy)$ of pi, k, p



 $\Box \Sigma(dv_1/dy) \text{ is obtained using: } \Sigma(dv_1/dy) = [dv_1^+/dy + dv_1^-/dy]$ 







# **p**<sub>t</sub> dependent **v**<sub>1</sub> (Pion)







## **p**<sub>t</sub> dependent v<sub>1</sub> (Kaon)



39

IM



# **p**<sub>t</sub> dependent v<sub>1</sub> (Proton)



40

IM



# **TOF Mass Square Distribution**











# Asymmetry in $(v_1 v_5 y)$ Results



The U+U collision shows Asymmetry in (v<sub>1</sub> vs y) results



